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Abstract—The importance of the road infrastructure for the
society could be compared with importance of blood vessels for
humans. To ensure road surface quality it should be monitored
continuously and repaired as necessary. The optimal distribution
of resources for road repairs is possible providing the availability
of comprehensive and objective real time data about the state of
the roads. Participatory sensing is a promising approach for such
data collection.

The paper is describing a mobile sensing system for road
irregularity detection using Android OS based smart-phones.
Selected data processing algorithms are discussed and their
evaluation presented with true positive rate as high as 90% using
real world data. The optimal parameters for the algorithms are
determined as well as recommendations for their application.

Index Terms—mobile sensing; participatory sensing; potholes;
accelerometers; algorithms

I. INTRODUCTION

Dangerous road surface conditions are major distractions
for safe and comfortable transportation. Both drivers and road
maintainers are interested in fixing them as soon as possible.
However, these conditions have to be identified first.

One approach to road damage detection is to use human
reports to central authorities. While it has the highest accuracy,
assuming that people are fair, it also has the most human
interaction and is not comprehensive. Statistical analysis can
be used to estimate damage probabilities of road segments
based on their usage intensity. Integration of vibration and
vehicle counting sensors in the pavement are used for sta-
tistical data collection [1]. Surface analysis methods using
Ground Penetrating Radar (GPR) have been developed [2]
and commercial products do exist [3]. Unfortunately, this
technology is using expensive equipment and therefore limits
its accessibility. As an alternative, participatory sensing has the
potential to increase the collected data resolution and scope.

The simplest method might be to collect photos of road
damage and hazards taken by the participants and to upload
them to a central server. However, this requires strong par-
ticipation and interaction from the users as well as manual
image analysis. We believe that an automated approach for
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detecting potholes with little or no human interaction is more
promising. This would ensure more comprehensive survey data
with less errors caused by human factors than generated by
mere enthusiasm of the participants.

An automated survey approach could be carried out by
either customized embedded sensing devices or smart-phones.
While the former has more sensing capabilities and adaptation
potential, the popularity of smart-phones makes the latter
approach very appealing in terms of practical usability.

To create a successful road surface monitoring system
accepted by wide user community, it is important to make
it attractive for the users - to provide added value without
a significant process overhead. Therefore we envision our
system as a service, which is added as a layer to existing
navigation systems, such as Waze [4], which use real-time traf-
fic information, collected by participatory sensing approach.
Although contemporary smart-phones have high processing
power and considerable memory, the detection system is
recommended to avoid resource-intensive detection methods
and to preserve initial user interface responsiveness.

Automated embedded sensing systems, including smart-
phones, have two general classes of sensors to be used for
pothole detection: microphone and accelerometers. In this
paper we focus on accelerometer data processing for pothole
detection This solution extends our proof of concept design
[5], and is implemented on Android OS [6].

Related work is discussed in Section II. System require-
ments and assumptions are listed in Section III. Four algo-
rithms are described and analyzed in Section IV. The evalua-
tion of our approach includes a set of test drives, analyzed in
Section V. The final section presents our conclusion that our
approach yields high true positive rate.

II. RELATED WORK

There are several vehicular sensing systems for pothole
detection. Some of these systems use accelerometers for data
acquisition. This section contains a short review of pothole
detection algorithms implemented in such accelerometer-based
systems. In addition the feasibility for implementation of these



systems on platforms with limited hardware and software
resources, such as Android based smart-phone, is considered.

BusNet [7] system developed at University of Colombo
is using Crossbow MICAz motes and several sensor boards
including accelerometer and GPS as hardware platform. This
system does not have the functionality for real time data
processing. The data is collected and stored locally for trans-
mission through wireless network to collection nodes located
at the bus stations for later processing. The only algorithm
related to pothole detection is based on sensing acceleration
and is used to start the data collection to save the limited
storage space.

Pothole Patrol system [8] developed at Massachusetts In-
stitute of Technology is using a specific hardware/software
platform – Linux powered Soekris 4801 embedded computers
with external accelerometers (sampling rate 380Hz) and an
external GPS. Their pothole detection algorithm is based on
simple machine-learning approach using X and Z axis accel-
eration and the vehicle velocity data as input. The algorithm
consists of five consecutive filters: speed, high-pass, z-peak,
xz-ratio and speed vs. z ratio. Each filter is used as a rejecter
of one or more event types not related to potholes such as
door slams or railway crossings. Additional training process
is executed for optimal tuning of the last three filters.

Nericell [9] and TrafficSense [10] systems developed at Mi-
crosoft Research India are using Windows Mobile OS powered
smart-phones as hardware/software platform with an array of
external sensors such as accelerometers (sampling rate 310Hz),
microphones and GPS. Their algorithms for pothole detection
z-sus (for speeds <25km/h) and z-peak (for speeds ≥25km/h)
are based on simple threshold-based heuristics. Additional
algorithm virtual reorientation is used to compensate arbitrary
orientation of the smart-phone during driving in the vehicle.

A system developed at National Taiwan University [11]
is using motorcycle-based mobile phones HTC Diamond as
a hardware platform with built-in accelerometers (sampling
rate ≤25Hz) and external GPS. Their approach for pothole
detection is based on supervised and unsupervised machine
learning methods. Client side tasks include filtering, segmen-
tation and feature extraction. Server side tasks use two learning
models - support vector machine and a smooth road model.
Road abnormality detection is performed using histograms of
a sequence of triaxial and overall acceleration data segments
with different windows sizes representing data from 0.5-2.0
seconds of driving time.

Researchers from University of Jyväskylä propose a pothole
detection approach in the context of offline data mining [12].
Accelerometer data (sampling rate 38Hz) is pre-processed
using band-pass filters with frequency range 0.5-6.0Hz, a
sliding window with different functions such as Chebyshev,
Hamming, Taylor and normalization in the range [0,1]. The
next step is feature extraction such as mean, peak-to-peak ratio,
root mean square, standard deviation, variance, power spec-
trum density and wavelet packet decomposition. Reducing of
the number of the features is done using backward and forward
selection, genetic algorithm and support vector machine using

principal component analysis. Although the test results of the
proposed approach show good performance, it is not suitable
for full implementation on a device with limited hardware
and software resources. Nevertheless, some of the described
methods could be useful for real time data processing.

Simple threshold based algorithms such as z-sus, z-peak
etc. undoubtedly are suitable for implementation on Android
based smart-phones. However, the available hardware and
software resources on this platform are capable of more
complex algorithms with better pothole detection parameters.
Our algorithms for pothole detection are distinct from the prior
work in two different aspects:

1) proposed solution assumes more advanced and heuristic
real time event detection using limited hardware and
software resources;

2) concentration on potholes as one specific event type
assumes better utilization of available sensor data.

III. TECHNICAL REQUIREMENTS

The following technical requirements were chosen as a basis
for pothole detection system:

1) The system should be able to detect events (potholes in
our case) in real time. Collection of raw data for off-line
post-processing is classified as an additional feature.

2) The system should use a generic Android OS based
smart-phone with accelerometer sensors as the hard-
ware/software platform. Portability to other platforms is
classified as an additional feature.

3) The system should be able to run on different smart-
phone models with different parameters. During the
system implementation process the set of minimal smart-
phone parameters should be determined and described.

4) The system running on a smart-phone should be able to
perform its native communication tasks at an adequate
quality level. Utilization of all resources for pothole
detection is not acceptable.

5) System should be able to detect events while driving
in different four-wheel vehicle types such as passenger
cars, minivans and buses. Two-wheel vehicles such as
motorcycles and scooters are not considered.

6) System should have a calibration or self-calibration
functionality, as different vehicles are likely to yield
different sensor data when encountering a pothole. This
functionality should be based on signal patterns specific
to the certain vehicle types.

IV. OUR APPROACH

Preliminary data from the accelerometer sensors were col-
lected using a modified LynxNet collar device [13] on an urban
road with various potholes. The device is based on Tmote
Mini sensor node with Texas Instruments micro-controller
MSP430F1611 and Analog Devices 3-axis accelerometer
ADXL335. MansOS based software was used for raw acceler-
ation data acquisition (sampling rate 100Hz) and transmission
through USB interface to a laptop computer [14]. Previously
developed RoadMic pothole detection methodology was used



Fig. 1. Pothole detection algorithm Z-THRESH. Events are represented by
measurements with values exceeding specified threshold levels.

Fig. 2. Pothole detection algorithm Z-DIFF. Events are represented by
consecutive measurements with difference value above specific threshold level.

to collect reference data. The test tracks were the same as for
the RoadMic project [15].

After the acquisition of the first test data set, a search for
potential event related features was performed. The emphasis
was placed on features that did not require resource-intensive
signal processing techniques and therefore were suitable for
implementation for detection using devices with limited hard-
ware and software resources.

The first and the simplest event detection algorithm Z-
THRESH (Fig. 1) were tested on the acquired data set. It
is similar to z-peak algorithm used in Pothole Patrol, Nericell
and TrafficSense systems, and is thresholding the acceleration
amplitude at Z-axis. The features that classify the measure-
ments are the values exceeding specific thresholds that identify
the type of the potholes, e.g. a large pothole or a cluster of
potholes. The algorithm assumes that the information about
Z-axis position of accelerometer is known. Additional virtual
reorientation of the accelerometer is possible, as described
in Nericell [9]. However, we used a simpler approach - a
controlled placement of the accelerometer, eliminating the
extra processing required for the virtual reorientation.

Next, a slightly more advanced algorithm was Z-DIFF (Fig.
2) tested on the acquired data set. Contrary to Z-THRESH
a search for two consecutive measurements with difference
between the values above specific threshold level was per-
formed. Thus the algorithm detected fast changes in vertical
acceleration data. The algorithm requires the determination of
the Z-axis position similarly to the previous approach.

After the analysis of the related work, the authors decided
to implement some of the techniques that were used for post
processing. One promising technique for implementation on
a resource-constrained device was using a standard deviation
of vertical axis acceleration. It was implemented in algorithm
STDEV(Z) (Fig. 3). However, the window sizes and specific
threshold levels had to be determined for the tuning of the

Fig. 3. Pothole detection algorithm STDEV(Z). Events are represented by
measurements with standard deviation value above specific threshold level.

Fig. 4. Pothole detection algorithm G-ZERO. Events are represented by tuple
of measurements with all three axis values below specific threshold level.

algorithm and especially for pothole event detection.
While using visual data analysis tools and searching for

specific data patterns authors found that there exist certain
events characterized by specific measurement tuple. All three-
axis data in this tuple was with values near to the 0g. Empirical
analysis of these data sets led to two preliminary conclusions:

1) such data tuples could be acquired when the vehicle was
in a temporary free fall, for example, entering or exiting
a pothole;

2) such data tuples could be analyzed without information
about exact Z-axis position of the accelerometer.

We named this algorithm G-ZERO (Fig. 4) after the main
feature of the detected event. The following section proceeds
with the evaluation of these pothole detection techniques.

V. EVALUATION

To evaluate the described algorithms the authors performed
the following set of the activities:

1) marking of the ground truth for the selected test track
using Walking GPS approach [16]

2) test drive session on selected test track with 4 different
smart-phones as data acquisition devices

3) processing of collected data using selected event detec-
tion algorithms;

4) statistical analysis of algorithm performance in context
of previously marked ground truth and the existing
RoadMic methodology.

The selected test track is 4.4km (2.73miles) long. It in-
cludes major multi-lane streets as well as minor single lane



TABLE I
GROUND TRUTH PARAMETERS

Class 24.03.2011 19.03.2010
Large potholes 3 3

Small potholes 18 18

Pothole clusters 30 30

Gaps 40 25

Drain pits 17 29

Total 108 105

TABLE II
ACCELEROMETER DIFFERENCES BETWEEN ANDROID SMART-PHONES,

AVERAGED OVER 10 MINUTE DRIVE

Device Sampling rate (Hz) Z-axis StdDev (g)
Samsung i5700 26 0.3076

Samsung Galaxy S 98 0.1171

HTC Desire 52 0.1215

HTC HD2 47 0.1242

streets in the city of Riga, Latvia, and is characterized by a
range of degree in road surface smoothness. Marking of the
ground truth was performed using EGNOS-compatible GPS
receiver Magellan eXplorist XL and RoadMic road irregularity
classification with 5 classes - large potholes, small potholes,
pothole clusters, gaps and drain pits. The actual ground truth
parameters (24th of March, 2011) and historical ground truth
parameters (19th of March, 2010) are shown in Table I.
It is notable that the common road irregularity count and
distribution between several irregularity classes show only
minor differences between the years, although the local climate
has snowy winters that are responsible for significant road
damage every year. The decreased count of the drain pits is
due to the more recent and improved multi-lane street ground
truth marking methodology where only drain pits located in
the lane used for the test track are classified as ground truth
objects.

The test drive session included 10 consecutive laps on
the selected test track and was performed in the same day
as the ground truth was established (24th of March, 2011).
Such approach ensured minimal road surface changes between
the data acquisition activities. The technical equipment used
during the test drive session included a passenger car BMW
323 Touring and four different smart-phones, described in
more detail in Table II. The experience from earlier proof
of concept test drive sessions as well as from the actual
session results suggested that three of the four used smart-
phones should be classified as typical items, but one (Samsung
i5700) as untypical item due to the differences in acquired
accelerometer parameters. The statistical analysis is based
on acceleration data acquired by one of the ”typical” smart-
phones: HTC Desire.

Processing of the collected data is associated with tuning of
appropriate threshold levels for all selected algorithms as well
as appropriate sliding window size for STDEV(Z) algorithm.
The authors performed this task using methodology similar

Fig. 5. Z-THRESH algorithm pothole detection performance using different
threshold levels.

Fig. 6. Z-DIFF algorithm pothole detection performance using different
threshold levels.

to the previous pothole detection related activities where the
events detected in ≤15m radius from any ground truth item
are classified as true hits. A ground truth item is classified as
true positive if during 10 test drive laps at least 4 events in
different laps are detected within ≤15m radius. Note, that all
of the detected events that are not true hits are false positives -
events that do not have any proximite ground truth points. For
visual clarity, false positive graph is hidden from the figures.

During the tuning process the Z-THRESH algorithm was
tested with threshold values between 0.1-1.0g. For further
analysis 0.4g was selected as the optimal value (Fig. 5)
characterized by 78% true positives and 76% of all detected
events were classified as true hits.

Threshold values between 0.1g and 0.8g were used for
tuning the Z-DIFF algorithm. Further analysis was performed
using 0.2g as the optimal threshold value (Fig. 6). Using this
value 92% of all ground truth items were true positives, and
77% of all detected events were in close distance with certain
ground truth object (true hits).

During the tuning of the algorithm STDEV(Z) a search for
appropriate sliding window size was performed using a range
of 4-80 samples. A tuple with maximal true positive (81%)
and true hit values (76%) corresponded to window with 20
samples and threshold value 0.2g (Fig. 7).

Searching for the optimal threshold value between 0.1-1.2g
performed tuning of the G-ZERO algorithm. The value 0.8g
was selected as the best fit (Fig. 8) characterized by 73% true
positives, while 76% of all detected events were classified as



Fig. 7. STDEV(Z) algorithm pothole detection performance using different
threshold levels and rolling window size 20.

Fig. 8. G-ZERO algorithm pothole detection performance using different
threshold levels.

true hit.
The performance results of the algorithms using previously

determined optimal parameters are shown in Table III. As
expected, the proof of concept test drive sessions detected
irregularities on the main road for 100% of big potholes
and 83-90% of pothole clusters. It is notable that 2 ground
truth pothole clusters (7%) were not detected by any of used
algorithms. Authors examined the positions of these objects
and found that both of them are located at street junctions
where the speed of a vehicle making a turn is too slow to
make notable fluctuations in acceleration.

Depending on the algorithm 78-89% of ground truth for the
small potholes were detected. It is notable that 9 of them (50%)
were detected by all 4 algorithms for each of the 10 test drive
sessions. This aspect suggests that smart-phone accelerometer
sensitivity is sufficient for this application and approach.

The gaps were detected in the range of 68-90% of the previ-
ously marked ground truth objects. Only 3 items (8%) escaped
from all 4 detection algorithms. These objects were located on
the main multi-lane street where the total road smoothness is
better than average and the transitions between several road
segments have only minor impact on the suspension of the
vehicles.

The fifth and final ground truth object class – drain pits were
detected by a different algorithm with a rather wide range of
47-100%. This aspect is notable in the context of future work
as a possibility to make assumption about the class of detected
road irregularity. Depending of the goal for the event detection

TABLE III
TRUE POSITIVE RATE OF THE FOUR USED ALGORITHMS

Class Z-THRESH Z-DIFF STDEV(Z) G-ZERO
Large potholes 3 (100%) 3 (100%) 3 (100%) 3 (100%)

Small potholes 15 (83%) 16 (89%) 16 (89%) 14 (78%)

Pothole clusters 25 (83%) 27 (90%) 27 (90%) 27 (90%)

Gaps 31 (78%) 36 (90%) 30 (75%) 27 (68%)

Drain pits 10 (59%) 17 (100%) 11 (65%) 8 (47%)

Total 84 (78%) 99 (92%) 87 (81%) 79 (73%)

several irregularity classes could be included or excluded from
the event type set.

VI. CONCLUSION AND FUTURE WORK

This paper describes accelerometer data based pothole de-
tection algorithms for deployment on devices with limited
hardware/software resources and their evaluation on real world
data acquired using different Android OS based smart-phones.
The evaluation tests resulted in optimal setup for each selected
algorithm and the performance analysis in context of different
road irregularity classes show true positive rates as high as
90%.

The future work includes experiments with combinations of
algorithms and development of self-calibration functionality.
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